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Abstract
We present a critical investigation of the validity of the harmonic approximation
for developing constitutive models for multiscale simulations. We examine
models using the Cauchy–Born hypothesis within the quasiharmonic, local
harmonic, and modified local harmonic approximations in order to characterize
the strain and temperature dependence of the Cauchy stress for uniaxial,
equibiaxial, and equitriaxial deformations. We compare these predictions with
molecular dynamics simulations to evaluate the suitability of each harmonic
model over a wide range of strains and temperatures. The various harmonic
approximations are found to be very robust over a large temperature range.
All the approximations make very similar predictions at small strains and
temperatures. At larger strains and temperatures, the quasiharmonic model is
the most accurate but also the most computationally expensive. The modified
local harmonic model is seen to provide an accurate alternative to the full
quasiharmonic model over a wide range of strains while being much less
computationally expensive. The local harmonic model is similar in absolute
accuracy to the modified local harmonic model, but the modified harmonic
model is seen to more accurately predict the elastic moduli.

1. Introduction

Knowledge of the free energy of a system is crucial for understanding its properties as a function
of temperature, stress, or strain. Although quite general numerical methods exist for computing
the free energy of a system, many important problems only benefit from having analytical
expressions for the free energy. For a crystalline solid, exact analytic expressions are available
only if the interatomic interactions are linear so that the solid is harmonic. At low temperatures
in a nonlinear solid, anharmonic effects may be small, and consequently the harmonic free
energy can be an accurate and useful analytical approximation. Since anharmonic effects in
a strained lattice can render the harmonic approximation invalid even at low temperatures, a
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variety of approximations based on expanding the potential energy about the strained state
have been developed.

The quasiharmonic (QH) approximation [1] is based on a second-order expansion about
a homogeneously deformed reference state. The dynamics of the solid are approximated as
harmonic oscillations around strained atomic positions which are expected to coincide with the
average system configuration. The QH vibrational frequencies are found from the eigenvalues
of the 3N × 3N dynamical matrix. In contrast, the local harmonic (LH) approximation [2]
neglects the vibrational coupling between atoms, and the vibrational frequencies are found from
an approximate dynamical matrix that is only 3 × 3. A third approach, the so-called modified
local harmonic model (MLH) [3] adds correction terms to the LH free energy in order to more
closely approximate the QH free energy. The MLH approach yields a power series that is in
principle exact for systems and strains that are sufficiently symmetric, but approximations are
required in order to develop expressions for more general systems or strain states. In this paper,
we present one such approximation developed in terms of an average local harmonic frequency
which is suitable for anisotropic strain states and general crystal symmetries. The LH and
MLH methods are less accurate than the QH model, but they have tremendous advantages in
computational time even for moderately sized systems, due to the smaller dynamical matrices
required.

Numerous studies have compared the accuracy of the various harmonic approximations for
perfect crystals [4, 5, 2, 6] as well as systems containing grain boundaries and vacancies [6] or
point defects [7]. Likewise, the QH models alone have been compared directly with molecular
dynamics (MD) simulations for systems in an isotropic stress state [8]. Most of these studies
focus on the accuracy of the free-energy function itself or the ability to predict the free energy
associated with system inhomogeneities. Little attention has been paid to the validity of these
harmonic models for systems in anisotropic stress or strain states. Likewise, while the pressure
versus density or temperature has been extensively characterized, less attention has been paid to
the accuracy of individual components of the stress tensor predicted by these models for more
general stress or strain states.

A class of problems where the model’s performance in general stress or strain states
must be well understood is exemplified by current efforts to seamlessly couple MD and the
finite element method (FEM) in a single, concurrent multiscale simulation. These simulations
are expected to be accurate, efficient alternatives to current direct approaches for problems
involving coupled physics with widely different characteristic length and time scales. A
canonical example is brittle fracture and subsequent crack propagation. The fracture process
ultimately depends on the rupture of individual bonds at or near the crack tip, yet the average
deformation of atoms far from the crack tip is well characterized by the smooth continuum
strain field of linear elasticity. Consequently, the region near the crack tip is modeled with
MD while the longer-scale physics are modeled with FEM further from the crack. Among the
currently proposed multiscale methods are the quasicontinuum method [9], the bridging-scale
method [10], and coarse-grained molecular dynamics [11].

All these methods can at best match, in a locally averaged sense, the ‘exact’ solution
obtained with a single MD simulation modeling the entire system. This constraint typically
leads to an interpretation of the FEM region as a coarse-scaled atomic region with all
atoms locally experiencing the same homogeneous deformation described by the continuum
strain field. This interpretation, known as the Cauchy–Born (CB) hypothesis [12], allows
the energetics of the continuum to be derived from the energy per unit volume of the
homogeneously deforming atomic system. At nonzero temperature, the effects of thermal
vibrations about the mean position are neglected in the continuum by the CB hypothesis. To
include thermal effects in the coarse-scale constitutive model and to correctly couple to an
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MD region at nonzero temperature, the CB hypothesis is extended so that only the ensemble-
averaged deformation is homogeneous. Although not explicitly modeled, fluctuations about
the average deformation contribute to the average stress tensor [13], so the long-time, large-
scale dynamics modeled by the FEM region must correctly reproduce this average stress.
Consequently, the continuum energetics and dynamics are obtained from the free energy, as
in the finite-temperature CB methods [14, 15].

As mentioned earlier, most work has focused on the accuracy of the free energy function
itself, while the MD–FEM coupling problem requires that the derivatives of the free energy
with respect to the strain measure be accurate. Moreover, this accuracy must hold over a wide
range of strains and deformations. The accuracy of these harmonic approximations has been
previously examined as a function of volumetric strain [2, 4, 8], but such deformation represents
only a small part of the full deformation space expected in a multiscale simulation. The
reliability of these models for anisotropic deformation states has received much less attention.

Another issue that has received scant attention as it pertains to multiscale modeling is
stability. A partial explanation for this lack of attention is because it is still not completely clear
to those studying this field what the basic stability criteria for a stressed solid should be (see,
e.g., [16–18], [19 chapters 5 and 6], [20 S.S. Antman’s preface], and the references therein and
also [21–26], which pertain specifically to crystals). This ambiguity arises, in part, because the
criteria depend on the geometric description of the deformation of the stressed state [27] as well
as on the thermodynamic mechanism maintaining the system in a constant stress ensemble [28].
For the multiscale problem, stability issues become important from the continuum viewpoint
because the vanishing elastic moduli are equivalent to the loss of ellipticity of the equations
of equilibrium. Moreover, implicit solution methods in FEM codes rely on the elastic moduli
or their approximants in order to determine the continuum strain field. Stability analysis can
consequently be seen as providing a bound on the strains and temperatures for which a coarse-
scale stress model is valid.

We present a critical evaluation of the QH, LH, and MLH models for the specific purpose
of deriving a temperature-dependent continuum constitutive model for a coupled MD–FEM
simulation. We examine the effects of temperature as well as the type and amount of
deformation on the average value of the stress tensor calculated from MD simulation. With
these data, we investigate whether any of the existing harmonic approximations are valid over
the range of temperatures and strains by comparing the data with predicted stress tensors of
the various harmonic models. Finally, we point out that the differences observed between
the various approximations have rather profound effects on stability estimates which may
be important to the FEM application of the constitutive models. We find that the LH and
QH models agree qualitatively only for the case of isotropic deformations. The QH and
MLH models better capture the deformation dependence for all the anisotropic strain states
considered here. Even though they are less accurate, the LH and MLH approaches may be
preferred in practice because they are computationally inexpensive. For anisotropic models,
the LH model performs worse than the MLH model. We show that this has implications for
stability predictions using the LH model, so that the MLH model should be preferred over the
LH model for multiscale methods as a reasonably accurate but less expensive alternative to the
QH method.

The outline of the paper is as follows. In section 2 we present an overview of continuum
stress tensors derived from the Helmholtz free energy using harmonic approximations. In
section 2, we also present a general version of the MLH model suitable for anisotropic strains
and any crystallographic symmetry. In section 3, we compare the harmonic predictions with
MD simulation, and we conclude in section 4. In the appendix, we present useful expressions
for implementing the various harmonic models and performing stability calculations.
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2. Methodology

We consider a monatomic crystal in its reference state with atoms located at Rα and labeled by
their unit cell α. In particular, for an N-atom crystal we have

∑
α 1 = N . A homogeneous

deformation of the crystal maps any point X in the reference configuration to a point x in the
strained configuration, and consequently atoms at Rα map to rα = F · Rα . Here F is the
deformation gradient

F ≡ ∂x(X)

∂X
. (1)

The homogeneous deformation is viewed as describing the thermally averaged atomic positions
so that the appropriate dynamic variables are the displacements uα measured relative to the
homogeneously deformed crystal, i.e. the configuration represented by rα . In an MD–FEM
multiscale simulation, the displacements uα would be resolved at the FEM scale only in a
thermally averaged sense while the longer wavelength degrees of freedom rα would be resolved
fully. For simplicity, we restrict attention to interatomic potential energies � that are sums over
pair potentials φ(r), but the treatment of more general cases is straightforward. In this case,
the potential energy is given by

�({uα}; F) =
∑

α<β

φ(rαβ + uαβ) (2)

with rαβ = rα − rβ and a similar definition for uαβ . At constant energy, the dynamics are
derived from the Hamiltonian H. At constant temperature T , the Helmholtz free energy F
provides information about the system’s static and dynamic properties. F is a function of F and
T and a functional of � over the configurational space {uα}. The first Piola–Kirchoff stress P
is work-conjugate to F, namely

P = V −1
0

∂F
∂F

∣
∣
∣
∣
∣
T

(3)

where V0 is the volume of the undeformed system. For comparison with MD simulation, the
Cauchy stress, σ , may be equated with the time-averaged virial stress tensor [29] and the stress
controlled by typical MD barostats [30]. The Cauchy stress is found from P

σ = J −1PFT (4)

where J = det F = V/V0.
All the harmonic approximations studied here may be viewed as arising from an

approximate Hamiltonian that depends on the deformation F but is quadratic in the atomic
displacements. Within this approximation, F becomes the sum of the potential energy due
to the average homogeneous deformation and a harmonic vibrational energy term. Omission
of the vibrational energy term yields the familiar CB energetics and constitutive model for
the averaged kinematics rα . The vibrational terms describe uncoupled harmonic oscillators
with frequencies {ωγ }. The actual values of the frequencies depend on the exact nature
of the approximation used and will be treated shortly. To compare with MD, which is a
classical simulation technique, we restrict attention to the classical or high-temperature limit
(h̄ωγ � kBT ) where the distribution function obeys Boltzmann statistics. The free energy
in the various harmonic models is then completely determined by the CB energy and the
vibrational spectrum of the model [31]

F(F, T ) = �(F) + kBT
∑

γ

ln

(
h̄ωγ (F)

kBT

)

. (5)
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The first term on the right-hand side is independent of temperature and is the energy of the CB
system, FCB ≡ �(F). The temperature dependence is determined by the vibrational spectrum
in the second term above which we denote Fω. Using (3), the first Piola–Kirchoff stress follows

V0P = ∂�

∂F
+ kBT

∑

γ

ω−1
γ

∂ωγ

∂F
(6)

where we have suppressed the dependence of the stress tensor on F and T for brevity. The first
term on the right-hand side is the stress determined from the CB model, V0PCB = ∂

∂FFCB. The
temperature dependence of the constitutive model is solely due to the change in frequency with
deformation which is a consequence of the anharmonicity of the potential. We denote these
temperature dependent terms by Pω. Thus, we have

P = PCB + Pω (7)

and may use an analogous decomposition and notation for the Cauchy stress tensor.
This decomposition is advantageous since we consider the QH, LH, and MLH harmonic
approximations which share the same CB term but differ in their treatment of the vibrational
free energy and Pω. Consequently, we use Fω only for the generic vibrational free energy term
computed using any approximation and use FQH,FLH, and FMLH to refer to the vibrational
free energy using one of the three specific harmonic approximations. A similar notation may
be employed for the vibrational contributions to the stress calculated with each specific model.
Finally, as seen from equation (6), Pω is linear in temperature. This linearity is important in
providing a means to ascertain whether any harmonic approximation is accurate in describing
the thermally averaged dynamics over a given range.

Although each of the three different harmonic approximations differ in their treatment
of the vibrational spectrum, they all depend fundamentally on the force constant matrix
Dαβ ≡ ∂2

∂uα∂uβ � describing the linear interaction of atom α with atom β . For defect-free
crystals, translational invariance allows us to restrict attention to a subset of force-constant
matrices Dα ≡ ∂2

∂uα∂u0 � for the bond between two atoms separated by rα . The vibrational
frequencies {ωγ } in the QH approximation are determined from the eigenvalues ω2

Kλ of the
Fourier-transformed force constant matrix DQH(K). This dynamical matrix is given by

DQH(K) =
∑

α

Dα exp(−iK · Rα). (8)

The N wavevectors {K} span the lattice reciprocal to the reference configuration. The
deformation of the reciprocal lattice need not be considered since k · rα = K · Rα is invariant
under homogeneous deformation. The deformation dependence is contained in the force
constant matrices and enters only through the derivatives of the potential evaluated in the
strained configuration. The QH model for an N-atom monatomic crystal yields a maximum
of N distinct wave-vectors K each corresponding to three frequency branches labeled by λ.
The QH approximation thus models acoustic and optical branches as well as the dispersion
relation for longitudinal and transverse normal modes.

In contrast to the QH model, the LH approximation neglects the coupling between
interacting atoms. Each branch of the QH spectrum is then approximated by a single LH
frequency. For a homogeneous monatomic system, the LH simplification of the QH model
yields the single 3 × 3 dynamical matrix

DLH =
∑

α

Dα (9)

with three possibly degenerate eigenvalues ω2
γ , γ = 1, 2, 3. Because of the drastic reduction

in size of the dynamical matrices, the LH model is much less computationally expensive than
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the QH model. The MLH model is likewise less expensive than the QH model, and it takes
the form of a correction to the LH vibrational free energy. This correction is derived from
the construction of an explicit expression for the difference between the QH free energy and
the LH free energy [3]. For certain deformations where the local harmonic frequency is triply
degenerate, this difference may be written exactly as a power series in the complete 3N × 3N
QH dynamical matrix. For more general deformations, we develop the MLH approximation in
terms of an average frequency ω6

MLH ≡ det DLH, recovering the original method for isotropic
deformations of cubic systems. The vibrational free energy within the MLH model is then
given by:

FMLH = FLH − 3NkBT

ω4
MLH

∑

α

Tr(Dα)2 + O(D3). (10)

For this version of the MLH model, we retain only this first correction term before truncating
the expression. The leading term in this power series is a second-order term proportional to the
square of the QH dynamical matrix. For the homogeneous systems studied here, the correction
term can be written as a sum of the square of the elements of the force constant matrices.
We defer further details of the exact computation of the MLH correction term and the various
harmonic stress-tensor calculations to the appendix.

As the expressions in the appendix indicate, successive derivatives of the frequencies with
respect to the deformation gradient lead to increasingly unwieldy expressions for the stress
tensor (first derivative) and elastic modulus (second derivatives). Consequently, evaluating
successive derivatives is increasingly computationally expensive. The relative expenses of the
free energy, stress tensor, and elastic modulus are independent of the number of atoms N for
a homogenous system. The derivative of a frequency with respect to the 3 × 3 components of
the deformation gradient yields a stress tensor evaluation roughly an order of magnitude more
expensive than the free energy evaluation. Similarly, evaluation of the modulus incurs another
order of magnitude increase in computational time. For evaluation of the free energies, the
LH and QH models require only the frequency spectrum while the MLH model also requires
the trace of the dynamical matrix squared. This MLH correction introduces little additional
expense for typical interatomic potentials since it reduces to a sum over atoms interacting with
a specific, central atom. For this work, we find the MLH model is at worst a factor of 2 slower
than the corresponding LH evaluation. The QH model is a factor of N more expensive than
the other harmonic models due to the required diagonalization of a 3 × 3 dynamical matrix
for each of the N wave-vectors. This QH penalty is not prohibitive for a one-time evaluation
at a given strain state, but the multiscale problem requires less expensive approximations for
even moderately large N , precisely because repeated evaluations at arbitrary deformations are
needed. In practice, we observe that the stress tensor evaluation within the QH model is feasible
on a typical workstation. The additional order of magnitude increase for the elastic moduli is
found to render their repeated evaluation within the QH approximation prohibitively expensive.

3. Results

The analytical expressions for the Helmholtz free energy and its strain derivatives presented
in the previous section can provide predictions for several averaged quantities which may
be obtained from MD simulation. Here we compare the predictions of the various harmonic
models for the pressure and the diagonal components of the Cauchy stress tensor with MD data.
Herein, we consider only deformations in which the off-diagonal stress components are zero.

The MD simulation method has been described in detail elsewhere [30], but we briefly
describe our technical approach. We integrate Hamilton’s equations of motion with the velocity
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Verlet algorithm and thermostat our system with a Nose–Hoover thermostat. We use a smooth
Lennard-Jones interatomic potential cutoff after second nearest neighbors. The specific cutoff
distance as a function of deformation depends on the strain state, since the number of neighbors
within a cutoff distance can change as the stretch is increased or decreased. The interatomic
pair potential is

φ(r) = 4ε

[(
σ

r

)12

−
(

σ

r

)6]

. (11)

We use reduced units where mass m is 1, energy is in units of ε, length is in units of σ , and
stress is in units of ε/σ 3. We use a timestep of �t = 10−3

√
mσ 2/ε for all MD simulations.

For each strain state and temperature, we apply the homogeneous deformation to the unstrained
crystal and to the periodic simulation box. Initial velocities are chosen for each prescribed
temperature from a Gaussian distribution with zero center of mass momentum and the correct
temperature achieved by scaling. The system is equilibrated in the initial state for 40 000 time
steps and then spatial and temporal averages are calculated for the next 160 000 time steps.
The NV T ensemble is sampled using a Nose–Hoover thermostat with a characteristic period
of 400 timesteps. We have verified that our ensemble averages and results are independent of
the particular sampling scheme used and the specific value chosen for the thermostat mass.

We simulate an FCC crystal in a cubic periodic simulation cell with eight cubic unit cells on
each side, yielding N = 2048 atoms. We investigate three different deformation states: uniaxial
deformation (straining the (100) direction), equibiaxial deformation (straining (100) and (010)
equally), and isotropic deformation (a volumetric strain) as a function of temperature and strain.
In other words, each type of deformation is characterized by a single parameter, i.e. uniaxial
deformation by F11, equibiaxial deformation by F11 = F22, and isotropic deformation by
F11 = F22 = F33. We consider stretches from −5% to +10% (F11 = 0.95–1.1), investigating
both tension and compression over a wide range. For each strain state, we model temperatures
kBT ranging from 0 to a maximum of 1.2ε. For many strain states, this maximum temperature
is above the melt temperature, and the solid becomes unstable well before this maximum
temperature is reached. We show only data for stable solids at each strain state and temperature.
We choose the zero-temperature stress-free lattice as our reference configuration.

Stress–strain curves at constant temperature for this system computed from the various
harmonic models in uniaxial tension are shown in figure 1. Up to strains of about 3%,
the approximations are seen to be indistinguishable. At higher strains, they show markedly
different behaviors with the QH model in between the extremes suggested by the LH and MLH
models. The MLH correction term added to the LH model is thus seen as an over-correction to
the actual QH stress–strain curve, but both the LH and MLH approximations have roughly the
same absolute error with respect to the QH values. One can ignore the complex frequency and
deformation dependence of each model and characterize the differences in each stress strain
curve by the derivatives of the stress tensor with respect to deformation and with respect to
temperature. From this viewpoint, the LH provides an over-estimation of the deformation
derivative while the MLH and QH models are qualitatively similar. Because of the simple
dependence on temperature within the harmonic approximations, the derivative of stress with
respect to temperature is constant.

For the temperature range studied here, we observe a linear variation of pressure with
temperature as shown in figure 2 for equibiaxial deformation. These data are representative of
similar results seen for isotropic and uniaxial deformations. At small strains, the data agree
well with the harmonic approximations throughout the large temperature range. The melt
temperature of the Lennard-Jones FCC crystal at zero pressure is 0.65ε–0.68ε, depending on
the range of the potential [32]. Consequently, the suppression of surface effects by the periodic

7



J. Phys.: Condens. Matter 19 (2007) 326207 C J Kimmer and R E Jones

Figure 1. (a) Isothermal Cauchy stress–strain curves for kBT = ε/4 showing the predictions of the
harmonic model for uniaxial tension. Shown is σ11 as predicted by the QH model (solid), the LH
model (short dashes), and the MLH model (long dashes). The MLH model is seen to be an over-
correction from the LH to the QH predictions. All models are virtually indistinguishable at small
strains. (b) The frequency-dependent part of the stress scaled by temperature for the QH (solid), LH
(long dashes), and MLH (short dashes) models.

Figure 2. Comparison of the predicted LH pressure at constant deformation (solid lines) with the
MD results (crosses) versus T for equibiaxial deformation over a range of strains and temperatures.
The strain increases from top to bottom, and the LH approximation is seen to perform well at low
temperatures and more poorly at high temperatures.

boundary conditions leads to some MD simulations being run for superheated Lennard-Jones
crystals [33, 34]. Although the physical relevance of these simulations is scant, this large
temperature range reveals that the predictions are reasonably close to the data even beyond
the melt temperature. The harmonic approximations can be considered extremely robust
even under the anisotropic deformations considered here. At higher stretches, the melting
temperature is reduced. So, although the LH model performs more poorly at large temperatures
and strains, it still performs well between zero temperature and the reduced melt temperature
for each corresponding strain. It is also apparent that the LH approximation overestimates
derivatives with respect to temperature. In fact, all three harmonic approximations are similar
in this sense. The case of uniaxial deformation leads to the best agreement between simulation
and the harmonic models, yet all three deformations studied clearly show deviations from the
expected linear dependence. These deviations are small relative to the value of the pressure
itself, so these harmonic approximations are indeed suitable over the temperature and strain
ranges studied here.

The MD data display smooth variations in the energy or stress as a function of temperature
and deformation up until critical strains or temperatures are reached. We associate the
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Figure 3. Comparison of the temperature-dependent (a) on-axis component (σω)11 and (b) off-axis
components (σω)22 = (σω)33 of the Cauchy stress tensor for uniaxial deformation versus the stretch
F11. Shown are predictions from the QH (solid line), MLH (short dashes), and LH (long dashes)
models versus the MD (crosses) results.

onset of instability as a function of strain and temperature with these critical values where
discontinuities in the stress tensor are first observed. The initial instabilities correspond to
localized defects in the solid and are dependent on the initial conditions of the simulation. At
slightly larger critical strains or temperatures, we find that no initial conditions produce a stable
solid. The critical strains and temperatures may be compared with predictions using any of the
various stability criteria for a stressed solid. An upper bound on these critical values is found
using the commonly employed Legendre–Hadamard condition [35, 36], a long-wavelength
elastic measure of the stability. We may also equate a short-wavelength, or phonon, instability
with the strain and temperature at which the QH or LH dynamical matrices no longer have real
eigenvalues. A zero or imaginary eigenvalue corresponds to a localized deformation whose
amplitude grows without energy penalty or without bound, respectively. This failure of the
harmonic models is sensitively dependent on the model and range of potential, and it has not
been previously pointed out as a limitation of the harmonic models.

In figure 3(a) we compare the MD data for a variety of temperatures with the harmonic
predictions for the 11 component of the temperature-dependent part of the Cauchy stress σω.
We have subtracted the CB stress tensor from the measured MD virial stress in order to make
a comparison with the predicted temperature-dependent contribution to the stress tensor, σω.
We then scale this tensor by temperature so that the data at different temperatures would fall on
the same curve if the harmonic approximation were exact. That collapse to a single curve
is not observed is indicative of the degree of anharmonicity in the system increasing with
temperature and strain. Interestingly, none of the harmonic models reproduces the simulation
data well even at low temperatures using this criterion. However, the scaling by temperature
effectively reduces this contribution to the stress tensor at small temperatures so that the overall
error between simulation and prediction remains small. The error between the data and the
harmonic predictions is roughly similar for all three models, but the QH and MLH models
clearly match the first derivative of the data more accurately than the LH model does. We see
similar results for the off-axis stress in the uniaxial case (figure 3(b)) and for the equibiaxial
case. Interestingly, all three harmonic models perform more or less equally well for isotropic
deformation, as seen in figure 4. Overall, it is seen that one must consider the performance of
the models under anisotropic deformation in order to completely describe the relative strengths
of each approximation.

To further characterize the accuracy of the LH and MLH approximations, we consider the
predictions of each model for the elastic stability limits of the solid. We employ a Legendre–
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Figure 4. Comparison of the temperature-dependent diagonal component of the Cauchy stress
(σω)11 = (σω)22 = (σω)33 for isotropic stretch. Shown are predictions from the QH (solid line),
MLH (short dashes), and LH (long dashes) models versus the MD (crosses) results.

Hadamard condition [35] to ascertain the large-scale incremental stability of the lattice, namely

Bi J kL ai NJ ak NL > 0 ∀ai , NJ . (12)

Here B is the so-called first elasticity tensor

B = ∂P

∂F
= ∂2F

∂F∂F
. (13)

Physically speaking, condition (12) can be interpreted as a requirement that small-amplitude
plane wave solutions to the equation of motion linearized about the deformed configuration
have positive, real frequencies; or in other terms, it requires that the deformed configuration is
such that the equilibrium equation ∂

∂X · P = 0 is still elliptic [37, 38]. In the former interpreta-
tion, N is the propagation direction and a is the polarization vector. We find the eigenvalues of
the acoustic tensor

Aik(N) = Bi J kL NJ NL (14)

for all N for a given deformation and temperature. If the minimum eigenvalue is non-positive
the state is considered unstable. To follow the locus of stability points in (F, T ) we start by find-
ing the critical deformation F along the zero temperature curve, i.e. for B = BCB, and then index
the one-parameter deformation gradient F and find the critical temperature for this deformation.

In figure 5 we show the predictions of the LH and MLH models for the long-wavelength
elastic stability limits. Both models predict the same trends as the MD data, but the estimations
of the MLH model for the maximum stable stretch at a given temperature are considerably
smaller than those of the LH model. For each model, the failure mode is shear at low
temperatures, while at higher temperatures the stability limit is governed by tensile failure. The
critical strain for shear failure increases with increasing temperature while the tensile failure
modes have a decreasing critical strain with increasing temperature. The shear failure regime
is in essence the Born stability criterion for the vanishing shear modulus C1212 = 0 [39]
except that additional finite-strain and temperature-dependent effects on the elastic moduli
are included in the calculations. As temperature increases, the vibrational contribution of the
harmonic models to the elastic moduli increases and eventually becomes the dominant factor in
determining the stability locus. The transition temperature or strain from shear to tensile failure
is consequently different for each of the harmonic approximations. The MLH model more
accurately models the elastic moduli as a function of temperature and strain, and this accuracy
is seen here to produce a better estimate of the onset of instability in the crystal, at least at
low T . Neither estimate is very accurate at high T , however, indicating that a more localized
measure for the onset of stability may be appropriate. This is not completely surprising since
the short-wavelength modes become unstable at smaller strains than the longer wavelength
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Figure 5. Comparison of the locus of instabilities seen in MD simulation against the long-
wavelength elastic predictions for the onset of instability using the LH (long dashes) and MLH
(solid) models for isotropic deformation.

modes in general. These data indicate that the most accurate stability measure may need to be
based on the complete vibrational spectrum and not just the long-wavelength elastic properties.
However, the MLH model is clearly seen to provide a better estimate than the LH model.

4. Discussion

It has been shown that all three harmonic models can be used to provide a reasonably-accurate
constitutive model for the multiscale modeling of Lennard-Jones crystals using coupled MD–
FEM simulations. Indeed, up to temperatures approaching the melt temperature, all three
harmonic models can be said to be sufficiently accurate over a wide range of strains to closely
follow the Cauchy stress tensor as determined from the MD simulation data. A critical
examination of the temperature-dependent terms in the Cauchy stress tensor reveals that all
three harmonic approximations have similar absolute errors between their predictions and the
actual values seen from the MD simulations. At low temperatures, this error is small relative
to the CB contribution to the stress, and at high temperatures the differences in the various
harmonic approximations lead to different over-and under-estimations relative to the MD data.
From this point of view, the LH model is insufficient to capture trends that depend on the elastic
moduli or the strain derivatives of the stress tensor. The MLH and QH models do capture these
trends, and the MLH is considerably less computationally expensive than the QH model. Of the
deformation states studied, the LH model performs worst for uniaxial deformation and best for
isotropic deformation. On the other hand, the MLH and QH models perform similarly for all
the deformation states investigated. The more accurate approximation of the elastic moduli is
also reflected in the ability of the MLH model to predict the onset of instability more accurately
than the LH model.

The tremendous decrease in computer time gained with the LH and MLH models strongly
argue against using the QH model in a multiscale simulation where the stress tensor is evaluated
repeatedly for different local deformation states. Similarly, the MLH model is seen to be
more accurate than the LH model, yet the first-order correction incurs only a modest additional
computational cost. Consequently, the results shown here suggest that adoption of the MLH
model would lead to some increase in the accuracy of current multiscale methods that use the
LH model.

In this work and in many MD–FEM multiscale approaches, the atomistic-continuum
correspondence is defined using the CB hypothesis. This CB rule has been shown to adequately
treat dynamic effects such as strain rate, as seen, for instance, in multiscale studies of brittle
fracture [40, 41]. Likewise, the CB hypothesis has been shown to remain useful down to even
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subcontinuum length scales in carbon nanotubes [42]. Yet for systems containing surfaces,
interfaces, defects, or dislocations, the CB rule is of limited utility even though the harmonic
approximations may still be used to characterize the vibrational properties of the systems.
Recent extensions of the quasicontinuum method have introduced methods to describe the
continuum energetics using the so-called energy-based [43] and force-based formulations [44].
These methods define coarse-grained continuum energetics in terms of representative atomic
configurations which need not be homogeneous, but their extension to nonzero temperatures
remains ongoing. Consequently, this work here will be useful in characterizing a broad range
of systems free of defects, dislocations, and interfaces, but its extension to more general systems
remains a subject of ongoing investigation.

Finally, we note that investigations similar to those described here should be carried out
for additional potentials, such as the embedded atom method (EAM) potentials. The Lennard-
Jones potential used here is known to have smaller anharmonic effects than the EAM potentials.
Similar critical investigations of the detailed dependence of the stress tensor on the deformation
state for more anharmonic potentials can provide important indications of the robustness of
these results and their general applicability to current multiscale efforts.
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Appendix. Dynamical matrices and their derivatives

Following section 2, we consider a static homogeneous deformation F with dynamic
displacements {uα} about the deformed configuration. We use Greek indices to label atoms,
dynamical matrices, or frequencies and reserve Arabic indices to label components (lowercase
for current quantities and uppercase for referential). In component notation, the deformation
gradient is

Fi J = ∂xi

∂ X J
(A.1)

where ek and EL are Euclidean basis vectors. Given

(rα)2 = RαCRα, C ≡ FTF (A.2)

and the pair potential φ, the derivatives of the frequencies with respect to the deformation can
be calculated in a straightforward but tedious fashion.

With the restriction to pair potentials φ(r), the force constant matrix Dα becomes

Dα = δα0
∑

γ

∂2φ

∂uγ ∂u0
− ∂2φ

∂uα∂u0
. (A.3)

The second derivatives in component notation are

∂2φ

∂uα
i ∂u0

j

∣
∣
∣
∣
u=0

= g(rα)δi j + 2 f (rα)rα
i rα

j (A.4)

where g(r) = r−1φ′(r) and f (r) = r−2(φ′′(r) − r−1φ′(r)). In the QH model, we note that
∏

λ

ω2
Kλ = det DQH(K). (A.5)
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Consequently, F can be written as a sum of determinants of the N dynamical matrices

F = �(F) + kBT

2

∑

K

ln det DQH(K). (A.6)

Likewise, within the LH model one has that
∏

γ

ω2
γ = det DLH. (A.7)

The free energy becomes

F = �(F) + kBT

2

∑

α

ln det DLH (A.8)

which may also be used to write down F . Returning to the generic label γ for the different
dynamical matrices, both models yield a free energy of the form

F = �(F) + kBT

2

∑

γ

ln det Dγ . (A.9)

As described in section 2, the MLH model is implemented as a single correction term applied
to the Helmholtz free energy obtained within the LH approximation.

The determination of the temperature-dependent terms in the first Piola–Kirchoff stress
in the QH or LH models thus reduces to determining the derivatives of the determinant
with respect to the deformation gradient. For the MLH model, one supplements this with
the derivatives of the force constants with respect to the strain. We note here that first-
order perturbation theory may be used to write these eigenvalue derivatives in terms of the
eigenvectors and the derivative of the dynamical matrix with respect to F. We prefer to
calculate the derivatives directly from determinants of the dynamical matrices. Our approach
offers considerable ease in implementing the second derivatives using symbolic algebra on
the computer, and perhaps more importantly, subtleties about the treatment of degenerate
frequencies do not arise. We calculate the derivatives of the determinant using the chain rule.
In coordinate notation,

det Dγ = Dγ

1 j c1 j = Dγ

2 j c2 j = Dγ

1 j c3 j (A.10)

where summation over repeated variable indices is implied and ci j is the the i j component of
the adjugate of Dγ , i.e. the cofactor of Dγ

i j . With this result, Jacobi’s formula gives us the
necessary derivative

∂ det Dγ

∂ FkL
= ∂ Dγ

i j

∂ FkL
ci j . (A.11)

The derivative of the QH dynamical matrix is given by

∂ DQH(K)

∂F
=

∑

α

∂ Dα

∂F
e−iK·Rα

. (A.12)

The derivatives of the LH dynamical matrix follow simply from equation (9) and the chain rule.
When specialized to pair potentials, the derivative of Dγ is calculated from equations (A.3)
and (A.4)

∂ Dα
i j

∂ FkL
=

(
g′(r)

2r
δi j + f ′(r)

r
rir j

)

RP RQ
∂CP Q

∂ FkL
+ f (r)(δikr j RL + δ jkri RL ). (A.13)

The remaining required derivative above is given by

∂CP Q

∂ FkL
= (δP L FkQ + FkPδQL ). (A.14)

13



J. Phys.: Condens. Matter 19 (2007) 326207 C J Kimmer and R E Jones

The temperature-dependent terms of the first Piola–Kirchoff stress become

V0 Pω = kBT

2

∑

γ

(det Dγ )−1 ∂ det Dγ

∂F
. (A.15)

With this expression, the required components of the Cauchy stress tensor may be evaluated,
too.

The elastic moduli are also now obtainable, although they involve considerably more
computation in the QH approximation. Given the additive decomposition of the free energy
F , we obtain a similar one for the moduli

B ≡ ∂P

∂F
= BCB + Bω. (A.16)

We compute the CB contribution to the modulus

V0(BCB)i J kL = δik
∂�

∂CJ L

∣
∣
∣
∣
rα

+ 4
∑

α

∂2�

∂r 2∂r 2

∣
∣
∣
∣
rα

ri RJ rk RL (A.17)

by employing the fact that we are examining only pair potentials. The temperature-dependent
tangent modulus is given by

V0Bω = kBT

2

∑

γ

[

−(det Dγ )−2 ∂ det Dγ

∂F
⊗ ∂ det Dγ

∂F
+ (det Dγ )−1 ∂2 det Dγ

∂F∂F

]

. (A.18)

The second derivative of the determinant is

∂2 det Dγ

∂ FlM ∂ FpQ
= ∂ Dγ

ik

∂ FlM∂ FpQ
cik + ∂ Dγ

ik

∂ FlM

∂cik

∂ FpQ
, (A.19)

which contains terms proportional to the second derivative of the dynamical matrices as well
as terms containing the product of two first derivatives. The second derivative of the dynamical
matrix is

∂2 Dγ

i j

∂ FkL ∂ FmN
= (4r)−1

[
∂

∂r

(
g′(r)

r

)

δi j + ∂

∂r

(
f ′(r)

r

)

rir j

]

RP RQ
∂CP Q

∂ FkL
RS RT

∂CST

∂ FmN

+
[

g′(r)

r
δi j + f ′(r)

r
rir j

]

RL RN δkm + f ′(r)

2r
(r j RN δim + ri RN δ jm)

∂r

∂ FkL

+ f ′(r)

2r
(r j RLδik + ri RLδ jk)

∂r

∂ FmN
+ f (r)(RL RN δikδ jm + RL RMδ jkδim).

(A.20)

Within the QH approximation for a moderately sized system, this term is prohibitively
expensive to evaluate using symbolic algebra programs.
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